Conversor RS232-RS485/RS422 Aislado

SISTEMA DE GESTION ISO 9001:2000

Los Productos Exemys están en permanente evolución para satisfacer las necesidades de nuestros clientes Por esa razón, la especificaciones y capacidades están sujetas a cambio sin previo aviso. Encuentre información actualizada en www.exemys.com

Copyright © Exemys, 2006. Todos los Derechos Reservados. Rev. 1.0.1

Índice

	INTRODUCCIÓN	4
	CARACTERÍSTICAS GENERALES	4
	CONTROL DE TRANSMISIÓN Y RECEPCIÓN	4
	CONFIGURACIÓN DE LOS MODOS RS485 / RS422	4
	CONEXIONADO	6
	CONEXIÓN DE MASA	6
	RESISTENCIAS	7
	7.1 Resistencias de Polarización	7
	7.2 Resistencias de Terminación	7
	EJEMPLOS DE CONEXIÓN	8
	CARACTERÍSTICAS TÉCNICAS	9
Figuras		
	Figura 1 - Modificación de los jumpers	
	Figura 2 - ConexionadoFigura 3 - Conexión de Masa	6 7
	Figura 4 - Resistencias de Polarización	7
	Figura 5 - Resistencias de TerminaciónFigura 6 - Ejemplos de Conexión	
Γablas		
	Tabla 1 - Configuración	4

Introducción

Este conversor ha sido diseñado para comunicar en forma serie, dos o más equipos ubicados unos de otros a distancias grandes. Es óptimo para la comunicación en ambientes industriales eléctricamente ruidosos, gracias a su característica de par diferencial propia de la norma RS485/422, a su práctico conexionado mediante borneras extraíbles y a su montaje en riel DIN. Soporta los modos full y half-duplex, los cuales pueden ser configurados por el usuario mediante jumpers ubicados en el interior del equipo.

Características Generales

- Aislamiento galvánico de 2500 Volts RMS (1 minuto).
- Baud rate de hasta 115200 baudios.
- 32 nodos en una misma red.
- Protección contra sobretensiones, en la línea RS485 y RS422.
- Alimentación 9-26 VAC, 9-30 VDC. Fuente Switching interna.
- Consumo de 300mA max.
- Borneras de conexión extraíbles.
- Montaje sobre Riel DIN.
- Gabinete Ignífugo.

Control de transmisión y recepción

En una línea con múltiples nodos, donde coexisten varios transmisores, es necesario mantener el control sobre cada uno de ellos para que no se produzcan colisiones de información al querer transmitir mas de uno al mismo tiempo. En el MCV1-C485-IA-IS el control de la transmisión es automático, es decir, cuando al equipo le llega un dato desde el lado RS232, pasa automáticamente a modo transmisión, en caso contrario permanece en el modo recepción.

Configuración de los modos RS485 / RS422

Tabla 1 - Configuración

JUMPER	J1	J2	J3
MODO 485	1-2	1-2	1-2
MODO 422	2-3	2-3	2-3

Este equipo se fabrica por defecto en modo 485 automático, si la aplicación requiere el uso del modo 485 con RTS, deberá contactarse con el fabricante. Cuando la configuración a utilizar es Full Duplex ó 422 se deben realizar los siguientes pasos:

- Desconecte completamente el equipo de otros dispositivos, redes de comunicación y alimentación.
- 2. Desmonte el equipo del riel DIN.
- 3. Presione ligeramente las trabas y tire suavemente de la tapa, note que la placa saldrá del gabinete adherida a la tapa.

IMPORTANTE

Al abrir el equipo, asegúrese de no estar en un ambiente de alto ruido eléctrico y de no poseer carga estática alguna. Es recomendable usar el brazalete de protección estática.

4. Modifique los jumpers J1, J2 y J3 para obtener la aplicación deseada.

NOTA

De fábrica los jumpers están ubicados para modo 485.

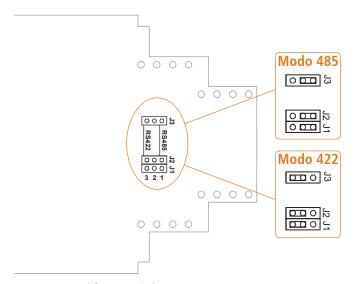


Figura 1 - Modificación de los jumpers

5. Reinserte la placa junto con la tapa y presione hasta oir los clicks del cierre de las trabas.

El equipo ya está listo para ser conectado nuevamente y trabajar en la nueva configuración.

Conexionado

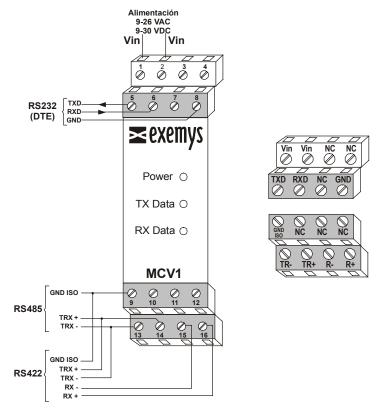


Figura 2 - Conexionado

Conexión de Masa

La norma RS485/422 utiliza transmisores y receptores del tipo diferencial, es decir que no necesitan tener una referencia a masa. La conexión del cable de masa se realiza sólo cuando la diferencia de potenciales de masa entre los nodos es muy grande o bien para mejorar la aislación contra el ruido. Sin embargo hay que tener ciertas precauciones antes de realizar esta conexión ya que la unión del cable de masa entre varios nodos de la línea puede generar circulación de corrientes importantes, debidas a los distintos potenciales de tierra que pueden existir entre dichos nodos. Para solucionar este inconveniente se puede hacer lo siguiente:

- A) Conectar el cable de masa a un solo nodo. (Sólo mejora la aislación contra el ruido)
- B) Conectar el cable de masa a todos los nodos, pero con un resistor en serie de 100 ohms o más.

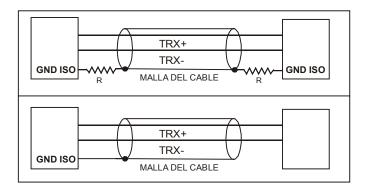


Figura 3 - Conexión de Masa

Resistencias

7.1 Resistencias de Polarización

En ambientes eléctricamente ruidosos, es conveniente polarizar las líneas de transmisión y recepción, para lo cual se utilizan las llamadas resistencias de polarización. En el modo de control automático estas resistencias son imprescindibles. El conversor posee en la placa resistencias de polarización de 2K2 Ohm.

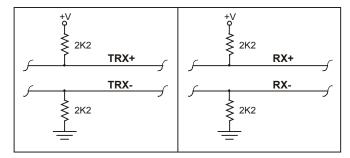


Figura 4 - Resistencias de Polarización

7.2 Resistencias de Terminación

La norma RS485/422 establece que deben colocarse resistencias de terminación en ambos extremos de la línea de transmisión-recepción, y de igual impedancia característica que la de dicha línea. Esto se hace para evitar reflexiones o ecos indeseados que puedan interrumpir o deformar la información. En el modo Half Duplex se colocan resistencias de terminación en ambos extremos de la línea, mientras que en el modo Full Duplex, se coloca una en cada extremo receptor. Normalmente la resistencia de terminación tiene un valor entre 80 y 200 ohms (120 ohms típico).

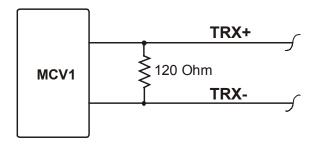


Figura 5 - Resistencias de Terminación

Ejemplos de Conexión

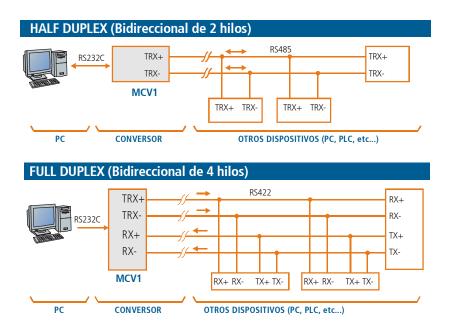


Figura 6 - Ejemplos de Conexión

Características Técnicas

Máxima cantidad de nodos:	32
• Máxima velocidad en Baudios:	115200
• Puerto Serial:	Puertos seriales RS232/485/422 en bornera industrial extraíble.
• Indicadores:	Led de transmisión. Led de recepción. Led de alimentación.
Aislación galvánica:	2500 volts.
Aislación contra Sobretensión:	Puertos RS485 y RS422.
• Dimensiones:	112,4 x 22,5 x 92,4 mm (AxAxL).
• Peso:	0,140 kg.
• Alimentación:	9 a 26 Volts AC 9 a 30 Volts DC
• Consumo:	300mA max.
• Temperatura:	Temperatura de operación: -5 a 65 °C Temperatura de almacenamiento: -40 a 75°C
Garantía / Soporte:	Garantía de 1 año. Soporte técnico incluído.